

Computational analysis of hydrodynamics and light distribution in algal photo-bioreactors

Varun Loomba 1, 2, Eric von Lieres 2, Gregor Huber 1

- ¹ Forschungszentrum Jülich, Institute of Bio- and Geosciences, IBG-2: Plant Sciences
- ² Forschungszentrum Jülich, Institute of Bio- and Geosciences, IBG-1: Biotechnology

glied der Helmholtz-Gemeinscha

OUTLINE

- Motivation
- > System description
- > Results
 - Hydrodynamics
 - Particle tracing
 - Light intensity
 - Different shapes of reactor
- Outlook

MOTIVATION

JÜLICH FORSCHUNGSZENTRUM

microalgae

scale up

biofuel

ed der Helmholtz-Gemeinschaf

SYSTEM DESCRIPTION

- Laboratory Photobioreactor (PBR) Size is 10 x 6 x 21cm
- Hydrodynamics: The system is highly heterogeneous and requires the study of turbulence
- ➤ **Light Profile**: The distribution of light needs to be studied as light is scattered and absorbed by algae
- ➤ Mass Transfer: Amount of CO₂ transferred from gas to liquid is studied
- ➤ Reactor Shapes: Different shapes of the reactor are studied to minimize dead zones

HYDRODYNAMICS

JÜLICH FORSCHUNGSZENTRUM

- Turbulent Bubbly Flow module was used to solve the Navier-Stokes equations
- k-ε model was implemented to include the effect of turbulence
- Inlet pipe was removed to speed up the simulations
- Bubble diameter is assumed constant

Gas phase volume fraction profile along 2 perpendicular planes

HYDRODYNAMICS

➤ Time dependent simulations were performed and their results used as input for stationary simulations

➤ 1st order discretization was implemented for both velocity and pressure

Direct solvers were used to solve the discretized equations

Liquid phase velocity profile along 2 perpendicular planes

PARTICLE TRACING

- ➤ Using the liquid phase velocity data from the hydrodynamic simulations, the paths of algae cells were traced using COMSOL's Particle Tracing Module
- Drag force is the only force affecting the movement of the algae cells
- A random turbulent dispersion was added to the velocity from the hydrodynamic data to account for the randomness because of turbulence

lied der Helmholtz-Gemeinschaft

LIGHT INTENSITY SIMULATION

Radiative Transfer Equation:

$$\frac{\partial I(s,\lambda)}{\partial s} = -\kappa I(s,\lambda) - \sigma I(s,\lambda) + \frac{\sigma}{4\pi} \int_{4\pi} I(\hat{s}',\lambda) \varphi(\hat{s},\hat{s}') d\Omega$$
Absorption Out-Scattering In-Scattering

- Light intensity is homogeneously incident on one surface of the reactor
- Absorption and out-scattering reduce the intensity from direction s
- In-scattering term accounts for the light that is removed from other directions and is added to the current direction s

glied der Helmholtz-Gemeinschaft

LIGHT INTENSITY SIMULATION

Radiative Transfer Equation:

$$\frac{\partial I(s,\lambda)}{\partial s} = -\kappa I(s,\lambda) - \sigma I(s,\lambda) + \frac{\sigma}{4\pi} \int_{4\pi} I(\hat{s}',\lambda) \varphi(\hat{s},\hat{s}') d\Omega$$
phase function

- COMSOL's RTE solver (Heat Transfer Module) does not contain the phase function needed in this specific case
- ➤ A MATLAB code was written to calculate the intensity at each discretized points in the PBR.

Mitglied der Helmholtz-Gemeinschaft

LIGHT INTENSITY SIMULATION

glied der Helmholtz-Gemeins

COMBINING LIGHT INTENSITY AND PARTICLE TRACING

Path of a single algae cell from a given starting position

Normalized light intensity received by the algae cell over time

glied der Helmholtz-Gemeinsc

COMBINING LIGHT INTENSITY AND PARTICLE TRACING

Path for many algae cells from a given starting position

Time spent by algae cells in light zone ($I/I_0 > 0.1$) for total time 150 min and concentration 0.1 kg/m³

glied der Helmholtz-Gemeinscha

DIFFERENT SHAPES OF REACTOR

Actual shape of the PBR

Corners smoothened

- Smoothened corners improve the liquid flow profile and mixing in the system
- > This also reduces the possibility of dead zones mainly at the corners of the PBR

glied der Helmholtz-Gemeinsch

DIFFERENT SHAPES OF REACTOR

- Making it an Airlift reactor
- > The plate divides the reactor into two regions
 - Riser
 - Downcomer
- The flow is highly turbulent in the riser region while laminar in the downcomer region
- Opens options to improve growth rate by combining the light exposure (light/dark cycles) and fluid flow patterns as the flow is more ordered than other designs

glied der Helmholtz-Gemeinschaft

OUTLOOK

- > CFD and particle tracing results combined with the light intensity simulations provide a quantification of the instantaneous light experienced by the particles.
- ➤ As next step, mass transfer of CO₂ from the gas phase to the liquid phase will be calculated and combined with CFD and particle tracing.
- ➤ All these results will be combined with an algae growth model in order to optimize algae growth depending on reactor shape, gas input, illumination and algae concentration.

Thank you for your attention!

tglied der Helmholtz-Gemeinschal

APPENDIX

➤ The Henyey-Greenstein function is a good trade off between fast calculation and good approximation

$$\varphi(\hat{s}, \hat{s}') = \frac{1 - g^2}{(1 + g^2 - 2g\cos\theta)^{1.5}}$$

where g is the asymmetric parameter (deciding whether the scattering is forward, backward or isotropic in nature and θ is the angle between incoming (\hat{s}) and outgoing (\hat{s}') direction